某企业准备投产一种新产品,经测算,已知每年生产万件的该种产品所需要的总成本为
万元,市场销售情况可能出现好、中、差三种情况,各种情况发生的概率和相应的价格p(元)与年产量x之间的函数关系如下表所示.
市场情况 |
概率 |
价格p与产量x的函数关系式 |
好 |
0.3 |
![]() |
中 |
0.5 |
![]() |
差 |
0.2 |
![]() |
设L1、L2、L3分别表示市场情况好、中、差时的利润,随机变量ξx表示当年产量为x而市场情况不确定时的利润.
(1)分别求利润L1、L2、L3与年产量x之间的函数关系式;
(2)当产量x确定时,求随机变量ξx的期望Eξx;
(3)求年产量x为何值时,随机变量ξx的期望Eξx取得最大值(不需求最大值).
已知函数.
(1)当时,求
的单调减区间;
(2)若方程恰好有一个正根和一个负根,求实数
的最大值.
在平面直角坐标系xOy中,已知椭圆C:的离心率为
,且过点
,过椭圆的左顶点A作直线
轴,点M为直线
上的动点,点B为椭圆右顶点,直线BM交椭圆C于P.
(1)求椭圆C的方程;
(2)求证:;
(3)试问是否为定值?若是定值,请求出该定值;若不是定值,请说明理由.
如图,有一段河流,河的一侧是以O为圆心,半径为米的扇形区域OCD,河的另一侧是一段笔直的河岸l,岸边有一烟囱AB(不计B离河岸的距离),且OB的连线恰好与河岸l垂直,设OB与圆弧
的交点为E.经测量,扇形区域和河岸处于同一水平面,在点C,点O和点E处测得烟囱AB的仰角分别为
,
和
.
(1)求烟囱AB的高度;
(2)如果要在CE间修一条直路,求CE的长.
如图,四边形为矩形,四边形
为菱形,且平面
⊥平面
,D,E分别为边
,
的中点.
(1)求证:⊥平面
;
(2)求证:DE∥平面.
已知向量,
,
.
(1)若⊥
,求
的值;
(2)若∥
,求
的值.