一个空间几何体的三视图如图所 示,其中
分别是
五点在直立、侧立、水平三个投影面内的投影,且在主视图中,四边形
为正方形且
;在左视图中
俯视图中
,
(Ⅰ)根据三视图作出空间几何体的直观图,并标明
五点的位置;
(Ⅱ)在空间几何体中,过点
作平面
的垂线,若垂足H在直线
上,求证:平面
⊥平面
;
(Ⅲ)在(Ⅱ)的条件下,求三棱锥的体积及其外接球的表面积.
已知复数z=+(m2-5m-6)i(m∈R),试求实数m分别取什么值时,z分别为:
(1)实数;
(2)虚数;
(3)纯虚数.
【原创】设,其中
.
(1)若无极值,求
的取值范围;
(2)若当,
恒成立,求
的取值范围.
已知函数,其中
(Ⅰ)求在
上的单调区间;
(Ⅱ)求在
(
为自然对数的底数)上的最大值;
(Ⅲ)对任意给定的正实数,曲线
上是否存在两点
、
,使得
是以原点
为直角顶点的直角三角形,且此三角形斜边中点在
轴上?
已知,命题
:对任意
,不等式
恒成立;命题
:存在
,使得
成立
(Ⅰ)若为真命题,求
的取值范围;
(Ⅱ)当,若
且
为假,
或
为真,求
的取值范围。
(Ⅲ)若且
是
的充分不必要条件,求
的取值范围。
已知,求证:关于
的三个方程
,
,
中至少有一个方程有实数根.