设函数(
为自然对数的底数),
(1)证明:;
(2)当时,比较
与
的大小,并说明理由;
(3)证明:(
).
设椭圆E中心在原点,焦点在x轴上,短轴长为4,点Q(2,)在椭圆上.
(1)求椭圆E的方程;
(2)设动直线L交椭圆E于A、B两点,且,求△OAB的面积的取值范围.
(3)过M()的直线
:
与过N(
)的直线
:
的交点P(
)在椭圆E上,直线MN与椭圆E的两准线分别交于G,H两点,求
的值.
如图,在四棱锥中,
//
,
,
,
,平面
平面
.
(1)求证:平面平面
;
(2)若直线与平面
所成的角的正弦值为
,求二面角
的平面角的余弦值.
某公司计划在迎春节联欢会中设一项抽奖活动:在一个不透明的口袋中装入外形一样号码分别为1,2,3, ,10的十个小球.活动者一次从中摸出三个小球,三球号码有且仅有两个连号的为三等奖,奖金30元;三球号码都连号为二等奖,奖金60元;三球号码分别为1,5,10为一等奖,奖金240元;其余情况无奖金.
(1)求员工甲抽奖一次所得奖金ξ的分布列与期望;
(2)员工乙幸运地先后获得四次抽奖机会,他得奖次数的方差是多少?
在数列中,
,
(1)求数列的通项
;
(2)若存在,使得
成立,求实数
的最小值.