游客
题文


(1) 当x=2时,求证:BD⊥EG ;
(2) 若以F、B、C、D为顶点的三棱锥的体积记为f(x),求f(x)的最大值;
(3) 当 f(x)取得最大值时,求二面角D-BF-C的余弦值.

科目 数学   题型 解答题   难度 容易
知识点: 表面展开图
登录免费查看答案和解析
相关试题

如图,在四棱柱ABCD—A1B1C1D1中,底面ABCD是等腰梯形,∠DAB=60°,AB=2 CD=2,M是线段AB的中点.

(1)求证:C1M∥平面A1ADD1
(2)若CD1垂直于平面ABCD且CD1,求平面C1D1M和平面ABCD所成的角(锐角)的余弦值.

已知向量,函数f(x)=,且y=f(x)的图象过点和点
(1)求m,n的值;
(2)将y=f(x)的图象向左平移φ(0<φ<π)个单位后得到函数y=g(x)的图象,若y=g(x)图象上各最高点到点(0,3)的距离的最小值为1,求y=g(x)的单调递增区间.

选修4—5:不等式选讲
已知
(Ⅰ)解不等式
(Ⅱ)若不等式恒成立,求a的取值范围.

选修4—4:极坐标与参数方程
已知圆的极坐标方程为:
(Ⅰ)将极坐标方程化为普通方程;并选择恰当的参数写出它的参数方程;
(Ⅱ)若点在该圆上,求的最大值和最小值.

(本小题满分12分)已知函数,其中e为自然对数的底数,a为常数.
(1)若对函数存在极小值,且极小值为0,求a的值;
(2)若对任意,不等式恒成立,求a的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号