已知椭圆的中心为坐标原点O,焦点在x轴上,过椭圆右焦点F2且斜率为1的直线交椭圆于A、B两点,弦AB的中点为T,OT的斜率为,(1)求椭圆的离心率;(2)设Q是椭圆上任意一点,F1为左焦点,求的取值范围;(3)若M、N是椭圆上关于原点对称的两个点,点P是椭圆上任意一点,当直线PN斜率,试求直线PM的斜率的范围。
已知中,面,,求证:面.
如图,PA⊥平面ABC,平面PAB⊥平面PBC求证:AB⊥BC
已知四边形是空间四边形,分别是边的中点,求证:四边形是平行四边形。
(本小题共12分) 圆O: 内有一点P(-1,2),AB为过点p且倾斜角为的弦, (1) (6′)当=135时,求AB的长; (2) (6′)当弦AB被点p平分时,写出直线AB的方程.
(本小题共10分) 三棱柱ABC—A1B1C1中,CC1⊥平面ABC,△ABC是边长为2的等边三角形,D为AB边中点,且CC1=2AB. (1)(4′)求证:平面C1CD⊥平面ABC; (2)(6′)求三棱锥D—CBB1的体积.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号