如图,F是定直线l外的一个定点,C是l上的动点,有下列结论:若以C为圆心,CF为半径的圆与l交于A、B两点,过A、B分别作l的垂线与圆
C过F的切线交于点P和点Q,则P、Q必在以F为焦点,l为准线的同一条抛物线上.
(Ⅰ)建立适当的坐标系,求出该抛物线的方程;
(Ⅱ)对以上结论的反向思考可以得到另一个命题:
“若过抛物线焦点F的直线与抛物线交于P、Q两点,
则以PQ为直径的圆一定与抛物线的准线l相切”请
问:此命题是否正确?试证明你的判断;
(Ⅲ)请选择椭圆或双曲线之一类比(Ⅱ)写出相应的命题并
证明其真假.(只选择一种曲线解答即可,若两种都选,则以第一选择为评分依据)
如图,设点是圆
上的动点,过点
作圆
的两条切线,切点分别为
,切线
分别交
轴于
两点.
(1)求四边形面积的最小值;
(2)是否存在点,使得线段
被圆
在点
处的切线平分?若存在,求出点
的纵坐标
;若不存在,说明理由.
如图,在平行四边形中,
,
,
为线段
的中线,将△
沿
直线
翻折成△
,使平面
⊥平面
,
为线
段
的中点.
(1)求证:∥平面
;
(2)设为线段
的中点,求直线
与平面
所成角的余弦值.
已知一隧道的截面是一个半椭圆面(如图所示),要保证车辆正常通行,车顶离隧道顶部至少要有
米的距离,现有一货车,车宽
米,车高
米.
(1)若此隧道为单向通行,经测量隧道的跨度是米,则应如何设计隧道才能保证此货车正常通行?
(2)圆可以看作是长轴短轴相等的特殊椭圆,类比圆面积公式,
请你推测椭圆的面积公式.并问,当隧道为双向通行(车道间的距离忽略不记)时,要使此货车安全通过,应如何设计隧道,才会使同等隧道长度下开凿的土方量最小?
求经过点,且与圆
相切于点
的圆
的方程,并判断两圆是外切还是内切?
直线经过点
,且与圆
相交与
两点,截得的弦长为
,求
的方程?