设三次函数h(x)=px3+qx2+rx+s满足下列条件:h(1)="1,h(-1)=" -1,在区间(-1,1)上分别取得极大值1和极小值-1,对应的极点分别为a,b。
(1)证明:a+b=0
(2)求h(x)的表达式
(3)已知三次函数f(x)=ax3+bx2+cx+d在(-1,1)上满足-1<f(x)<1。证明当|x|>1时,有|f(x)|<|h(x)|
(1)求椭圆C的方程;
(2)若P为椭圆C上的动点,M为过P且垂直于x轴的直线上的点,=λ,求点M的轨迹方程
(1)当时,求函数
的单调递增区间;
(2)若,使
成立,求实数a的取值范围;
(3)若函数的图象在区间(1,+∞)内恒在直线
下方,求实数
的取值范围.
(1)当时,求椭圆的标准方程及其右准线的方程;
(2)用表示P点的坐标;
(3)是否存在实数,使得
的边长是连续的自然数,若存在,求出这样的实数
;若不存在,请说明理由.
(1)当车速为(千米/小时)时,从甲地到乙地的耗油量为
(升),求函数
的解析式并指出函数的定义域;
(2)当车速为多大时,从甲地到乙地的耗油量最少
(1)证明:;
(2)当点为线段
的中点时,求异面直线
与
所成角的余弦值;
(3)试问E点在何处时,平面与平面
所成二面角的平面角的余弦值为
.