侧棱PA=PD=,底面ABCD为直角梯形,其中
BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点.
(1)求证:PO⊥平面ABCD;
(2)求异面直线PB与CD所成角的余弦值;
(3)线段AD上是否存在点Q,使得它到平面PCD的距离为?若存在,求出
的值;若不存在,请说明理由.
如图所示,将一矩形花坛扩建成一个更大的矩形花坛
,要求
在
的延长线上,
在
的延长线上,且对角线
过
点.已知
米,
米。
(1)设(单位:米),要使花坛
的面积大于32平方米,求
的取值范围;
(2)若(单位:米),则当
,
的长度分别是多少时,花坛
的面积最大?并求出最大面积.
如图,在中,
边上的中线
长为3,且
,
.
(Ⅰ)求的值;(Ⅱ)求
边的长.
已知,
.
(1)若,求
的值;
(2)若,
求
的值.
如图,正三棱柱中,点
是
的中点.
(Ⅰ)求证: 平面
;
(Ⅱ)求证:平面
.
已知函数,
.
(1)若, 函数
在其定义域是增函数,求
的取值范围;
(2)在(1)的结论下,设函数的最小值;
(3)设函数的图象
与函数
的图象
交于点
,过线段
的中点
作
轴的垂线分别交
、
于点
、
,问是否存在点
,使
在
处的切线与
在
处的切线平行?若存在,求出
的横坐标;若不存在,请说明理由.