设函数f(x)=x2+(lga+2)x+lgb,g(x)=2x+2,若f(-1)=0,且对一切实数x,不等式f(x)≥g(x)恒成立;
(Ⅰ)(本问5分)求实数a、b的值;
(Ⅱ)(本问7分)设F(x)=f(x)-g(x),数列{an}满足关系an=F(n),
证明:
(本小题满分10分)
已知函数
(Ⅰ)求函数的最小正周期和最小值;
(Ⅱ)设的内角
对边分别为
与
垂直,求
的值.
如图,已知AD是△ABC的外角∠EAC的平分线,交BC的延长线于点D,延长DA交△ABC的外接圆于点F,连接FB,FC。
(1)求证:FB=FC;
(2)若AB是△ABC的外接圆的直径,∠EAC =120°,BC=6,求AD的长。
在各项为正的数列中,数列的前n项和
满足
(1)求;(2) 由(1)猜想数列
的通项公式;(3) 求
在复平面上,平行四边形ABCD的三个顶点A、B、C 对应的复数分别为 .求第四个顶点D的坐标及此平行四边形的对角线的长.
实数m取什么数值时,复数分别是:
(1)实数? (2)虚数? (3)纯虚数?