已知直线所经过的定点恰好是椭圆的一个焦点,且椭圆上的点到点的最大距离为8.(1)求椭圆的标准方程;(2)已知圆,直线.试证明当点在椭圆上运动时,直线与圆恒相交;并求直线被圆所截得的弦长的取值范围.
设函数f(x)=-x3+x2+(m2-1)x(x∈R),其中m>0. (1)当m=1时,求曲线y=f(x)在点(1,f(1))处的切线的斜率; (2)求函数f(x)的单调区间.
已知直线l1为曲线y=x2+x-2在点(1,0)处的切线,l2为该曲线的另一条切线,且l1⊥l2. (1)求直线l2的方程; (2)求由直线l1,l2和x轴所围成的三角形面积.
已知曲线上一点P(1,2),用导数的定义求在点P处的切线的斜率.
设复数,若,求实数的值.
已知函数 (I)求不等式的解集; (II)若关于x的不等式恒成立,求实数的取值范围.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号