如图,已知是直角梯形,
,
,
,
平面
.
(1) 证明:;
(2) 在上是否存在一点
,使得
∥平面
?若存在,找出点
,并证明:
∥平面
;若不存在,请说明理由;
(3)若,求二面角
的余弦值.
如图所示的几何体中,矩形和矩形
所在平面互相垂直,
,
为
的中点,
。
(Ⅰ)求证:;
(Ⅱ)求证:。
为调查某市学生百米运动成绩,从该市学生中按照男女生比例随机抽取50名学生进行百米测试,学生成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组,第二组
……第五组
,如图是按上述分组方法得到的频率分布直方图。
(Ⅰ) 在第一组和第五组内任取两个学生,记这两人的百米测试成绩分别为求事件“
”的概率;
(Ⅱ) 根据有关规定,成绩小于16秒为达标.如果男女生使用相同的达标
标准,则男女生达标情况如附表:
性别 是否达标 |
男 |
女 |
合计 |
达标 |
![]() |
![]() |
_____ |
不达标 |
![]() |
![]() |
_____ |
合计 |
______ |
______ |
![]() |
完成上述2×2列联表,根据上表数据,能否有99%的把握认为“体育达标与性别有关”?若有,你能否提出一个更好的解决方法来?
附:
已知等差数列{}满足
,
。
(I)求数列{}的通项公式;
(II)记,求数列
的前n项和
。
设,
分别是椭圆E:
+
=1(0﹤b﹤1)的左、右焦点,过
的直线
与E相交于A、B两点,且
,
,
成等差数列。
(Ⅰ)求
(Ⅱ)若直线的斜率为1,求b的值。
已知在区间[0,1]上是增函数,在区间
上是减函数,又
(Ⅰ)求的解析式;
(Ⅱ)若在区间(m>0)上恒有
≤x成立,求m的取值范围.