已知,分别求下列各式的值:
⑴; ⑵
.
已知函数.(
为常数)
(1)当时,①求
的单调增区间;②试比较
与
的大小;
(2),若对任意给定的
,在
上总存在两个不同的
,使得
成立,求
的取值范围.
已知椭圆的右焦点为
,离心率
,
是椭圆上的两动点,动点
满足
(其中实数
为常数).
(1)求椭圆标准方程;
(2)当,且直线
过
点且垂直于
轴时,求过
三点的外接圆方程;
(3)若直线与
的斜率乘积
,问是否存在常数
,使得动点
满足
,其中
,若存在求出
的值,若不存在,请说明理由.
某商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格
(单位:元/千克)满足关系式
,其中
,
为常数,已知销售价格为5元/千克时,每日可售出该商品11千克.
⑴求的值;
⑵若该商品的成本为3元/千克, 试确定销售价格的值,使商场每日销售该商品所获得的利润最大.
二次函数的最小值等于4,且
.
(1)求的解析式;
(2)若函数的定义域为
,求
的值域;
(3)若函数的定义域为
,
的值域为
,求
的值.
设:函数
在
内单调递减;
:曲线
与
轴交于不同的两点.
(1)若为真且
为真,求
的取值范围;
(2)若与
中一个为真一个为假,求
的取值范围.