(本小题满分13分)已知椭圆,其中
为左、右焦点,O为坐标原点.直线l与椭圆交于
两个不同点.当直线l过椭圆C右焦点F2且倾斜角为
时,原点O到直线l的距离为
.又椭圆上的点到焦点F2的最近距离为
.
(1)求椭圆C的方程;
(2)以OP,OQ为邻边做平行四边形OQNP,当平行四边形OQNP面积为时,求平行四边形OQNP的对角线之积
的最大值;
(3)若抛物线为焦点,在抛物线C2上任取一点S(S不是原点O),以OS为直径作圆,交抛物线C2于另一点R,求该圆面积最小时点S的坐标.
(本小题满分12分)已知是等差数列
的前n项和,数列
是等比数列,
恰为
的等比中项,圆
,直线
,对任意
,直线
都与圆C相切.
(Ⅰ)求数列的通项公式;
(Ⅱ)若时,
的前n项和为
,求证:对任意
,都有
(本小题满分12分)如图,在四棱柱中,侧面
⊥底面
,
,底面
为直角梯形,其中
,
,
为
中点.
(1)求证:平面
;
(2)求锐二面角的余弦值.
(本小题满分12分)某运动队拟在2015年3月份安排5次体能测试,规定:依次测试,只需有一次测试合格就不必参加后续的测试.已知运动员小刘5次测试每次合格的概率依次构成一个公差为的等差数列,他第一次测试合格的概率不超过
,且他直到第二次测试才合格的概率为
.
(Ⅰ)求小刘第一次参加测试就合格的概率;
(Ⅱ)在小刘参加第一、第二次测试均不合格的前提下,记小刘参加后续测试的次数为,求随机变量
的分布列和数学期望.
(本小题满分12分)已知函数
(Ⅰ)求函数的对称中心;
(Ⅱ)已知△ABC内角的对边分别为
,且
,
,
,求