(本小题满分14分)
某化妆品生产企业为了占有更多的市场份额,拟在2005年度进行一系列促销活动,经过市场调查和测算,化妆品的年销量x万件与年促销费t万元之间满足3-x与t+1成反比例,如果不搞促销活动,化妆品的年销量只能是1万件。已知2005年生产化妆品的设备折旧和维修等固定费用为3万元,每生产1万件化妆品需再投入32万元的生产费用,若将每件化妆品的售价定为:其生产成本的150%与“平均每件促销费的一半”之和,则当年生产的化妆品正好能销完.
⑴将2005年的利润y(万元)表示为促销费t(万元)的函数;
⑵该企业2005年的促销费投入多少万元时,企业的年利润最大?
(注:利润=销售收入—生产成本—促销费,生产成本=固定费用+生产费用)
如图,在三棱锥中,已知△
是正三角形,
平面
,
,
为
的中点,
在棱
上,且
,
(1)求证:平面
;
(2)求平面与平面
所成的锐二面角的余弦值;
(3)若为
的中点,问
上是否存在一点
,使
平面
?若存在,说明点
的位置;若不存在,试说明理由.
如图,矩形与正三角形
中,
,
,
为
的中点。现将正三角形
沿
折起,得到四棱锥的三视图如下:
(1)求四棱锥的体积;
(2)求异面直线所成角的大小。
已知直线和点
,点
为第一象限内的点且在直线
上,直线
交
轴正半轴于点
,求△
面积的最小值,并求当△
面积取最小值时的
的坐标。
已知直线过两直线
和
的交点,且直线
与点
和点
的距离相等,求直线
的方程。
(本小题满分15分)
记函数.
(1)若函数在
处取得极值,试求
的值;
(2)若函数有两个极值点
,
且,试求
的取值范围;
(3)若函数对任意
恒有
成立,试求
的取值范围.(参考:
)