如图,在三棱锥中,已知△
是正三角形,
平面
,
,
为
的中点,
在棱
上,且
,
(1)求证:平面
;
(2)求平面与平面
所成的锐二面角的余弦值;
(3)若为
的中点,问
上是否存在一点
,使
平面
?若存在,说明点
的位置;若不存在,试说明理由.
如图,在四棱锥中,
,
,
,平面
平面
,
是线段
上一点,
,
,
.
(Ⅰ)证明:平面
;
(Ⅱ)设三棱锥与四棱锥
的体积分别为
与
,求
的值.
汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆);
轿车A |
轿车B |
轿车C |
|
舒适型 |
100 |
150 |
z |
标准型 |
300 |
450 |
600 |
按类型用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆.
(Ⅰ)求z的值;
(Ⅱ)用分层抽样的方法在C类轿车中抽取一个容量为5的样本,将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;
(Ⅲ)用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2.把这8辆轿车的得分看成一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率
已知函数在区间
上的最大值为2
.
(1)求常数的值;
(2)在中,角
,
,
所对的边是
,
,
,若
,
,
面积为
.求边长
.
(满分15分)设函数,
,(其中
为自然底数);
(Ⅰ)求(
)的最小值;
(Ⅱ)探究是否存在一次函数使得
且
对一切
恒成立;若存在,求出一次函数的表达式,若不存在,说明理由;
(Ⅲ)数列中,
,
,求证:
。
(满分15分)动圆过定点
且与直线
相切,圆心
的轨迹为曲线
,过
作曲线
两条互相垂直的弦
,设
的中点分别为
、
.
(1)求曲线的方程;
(2)求证:直线必过定点.