在数列{an}中,已知a1=1,a2=3,an+2= 3an+1- 2an.
(1)证明数列{ an+1- an}是等比数列,并求数列{an}的通项公式;
(2)设bn=,{bn}的前n项和为Sn,求证
已知数列满足
,它的前
项和为
,且
.
①求通项,
②若,求数列
的前
项和的最小值.
已知函数,
.
(Ⅰ)判定在
上的单调性;
(Ⅱ)求在
上的最小值;
(Ⅲ)若,
,求实数
的取值范围.
已知圆O:交
轴于A,B两点,曲线C是以
为长轴,离心率为
的椭圆,其左焦点为F.若P是圆O上一点连结PF,过原点O作直线PF的垂线交椭圆C的左准线于点Q.
(1)求椭圆C的标准方程;
(2)若点P的坐标为(1,1),求证:直线PQ与圆相切;
(3)试探究:当点P在圆O上运动时(不与A、B重合),直线PQ与圆O是否保持相切的位置关系?若是,请证明;若不是,请说明理由.
已知四边形满足
∥
,
,
是
的中点,将
沿着
翻折成
,使面
面
,
为
的中点.
(Ⅰ)求四棱的体积;(Ⅱ)证明:
∥面
;
(Ⅲ)求面与面
所成二面角的余弦值.