(21分) (1) (6分) 在《用单摆测定重力加速度》的实验中,为防止摆球在摆动过程中形成“圆锥摆”,实验中采用了如图所示的双线摆.测出摆线长度为L,线与水平横杆夹角为θ,摆球半径为r.若测出摆动的周期为T,则此地重力加速度为 ;某同学用10分度的游标卡尺测量摆球的直径时主尺和游标如图所示,则摆球的半径r为 mm.
(2) (15分)为了验证比较光敏电阻在室内正常光照射和室外强光照射时电阻的大小关系,设计了如下实验步骤:
A.按图a连接好电路 |
B.在正常光照下滑动变阻器滑片,读出多组电流和电压值 |
C.改用强光源照射光敏电阻,滑动滑片,读出多组电流和电压值 |
D.画出两种情况下光敏电阻的U – I图(图b),并根据图线分别求出两种光照下的光敏电阻的阻值 |
①根据电路的实物图在方框中(图c)画出电路图(光敏电阻在电路中的符号为);
②根据U-I图可知正常光照时光敏电阻阻值为_______,强光源照射时电阻为_______
;
③若实验中所用电压表的内阻约为,毫安表的内阻约为
,考虑到电表内阻对实验结果的影响,此实验中_______________(填“正常光照射时”或“强光照射时”测得的电阻误差较大;若要较为准确地测量这种光照下的电阻,则应将实物图中的毫安表的连接方式改为__________(填“内接”或“外接”)重新进行实验.
如图所示,电阻可忽略不计的光滑水平轨道,导轨间距L=1m,在导轨左端接阻值R=0.3Ω的电阻。在导轨框内有与轨轨平面垂直的有界匀强磁场,磁场边界为矩形区域cdef,其中cd、ef与导轨垂直,磁场宽度刚好等于轨轨间距L,磁场长度s=1m,磁感应强度B=0.5T。一质量为m=1kg,电阻r="0.2" Ω的金属导体棒MN垂直放置于导轨上,且与导轨接触良好。现对金属棒施以垂直于导轨的水平外力F,金属棒从磁场的左边界cd处由静止开始以加速度a=0.4m/s2作匀加速运动。
(1) 推导出水平拉力F随时间t变化的关系式;
(2) 力F作用一段时间t1后撤去力F;若已知撤去F后金属棒的速度v随位移x的变化关系为(v0为撤去F时金属棒速度),并且金属棒运动到ef处时速度恰好为零,则外力F作用的时间t1为多少?
(3) 若在金属棒离开磁场区域前撤出外力F,试定性画出棒在整个运动过程中速度随位移变化所对应的各种可能的图线.(直接画图,不需要进行有关推导)
现有一根不可伸长的轻质细绳,绳长L=1m。绳的一端固定于O点,另一端系着质量m=2kg的可看着质点的小球,将小球拉到O点正上方的A点处静止,此时绳子刚好伸直且无张力。不计小球在运动中所受的阻力,重力加速度g取10m/s2。则:
⑴ 使小球刚好能在竖直平面能做完整的圆周运动,则在A点对小球做多少J的功?
⑵ 求在⑴的条件下,小球运动到最低点时绳对它的拉力大小。
⑶ 若小球从A点以V1=1m/s的水平速度抛出,在抛出的瞬间绳子对小球是否有拉力?如有拉力计算其大小;如没有拉力,求绳子对小球再次有拉力所经历的时间。
用速度为v0、质量为m1的核轰击质量为m2的静止的
核,发生核反应,最终产生两种新粒子A和B,其中A为
核,质量为m3,速度为v3;B的质量为m4.
① 写出该反应的核方程式
② 粒子A的速度符合什么条件时,粒子B的速度方向与He核的运动方向相反.
已知光在真空中的传播速度C=3×108m/s。如图,折射率n=1.5某玻璃立方体放在空气中。光线从立方体的顶面斜射进来,然后投射到它的另一个侧面P点,问:
① 光在玻璃中的传播速度V;
②此光线能否从另一个侧面P点射出?请说明你判断的依据。
如图,p-T和V-T图记录了一定质量的理想气体经历了温度从200K到600K缓慢升温过程的部分变化过程。试求:
① 温度为600K时气体的压强;
② 试在p-T图上将温度从400 K缓慢升高到600 K的过程用图线表示出来。