某项竞赛分别为初赛、复赛、决赛三个阶段进行,每个阶段选手要回答一个问题.规定正确回答问题者进入下一阶段竞赛,否则即遭淘汰.已知某选手通过初赛、复赛、决赛的概率分别是,且各阶段通过与否相互独立.(I)求该选手在复赛阶段被淘汰的概率;(II)设该选手在竞赛中回答问题的个数为,求的分布列、数学期望和方差.
一空间几何体的三视图如图所示, 求该几何体的体积。
已知函数且此函数图象过点(1,5).(1)求实数m的值;(2)判断f(x)奇偶性;(3)讨论函数f(x)在上的单调性?并证明你的结论.
( 已知椭圆的两个焦点,且椭圆短轴的两个端点与构成正三角形. (1)求椭圆的方程; (2)过点(1,0)且与坐标轴不平行的直线与椭圆交于不同两点P、Q,若在轴上存在定点E(,0),使恒为定值,求的值.
((本题满分13分) 已知,函数. (1) 若函数在上为减函数,求实数的取值范围; (2) 令,已知函数.若对任意,总存在,使得成立,求实数的取值范围.
( 已知数列,设,数列。
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号