已知R,函数
(x∈R).
(1)当时,求函数
的单调递增区间;
(2)函数是否在R上单调递减,若是,求出
的取值范围;若不是,请说明理由;
(3)若函数在
上单调递增,求
的取值范围.
对,不等式
所表示的平面区域为
,把
内的整点(横坐标与纵坐标均为整数的点)按其到原点的距离从近到远排成一列点:
(1)求,
(2)若(
为非零常数),问是否存在整数
,使得对任意
,
都有.
设,其导函数
的图像经过点
,且在
时取得极小值
,
(1)求的解析式;
(2)若对都有
恒成立,求实数
的取值范围。
如图,正三棱柱的底面边长为
,侧棱长为
,点
在棱
上.
(1)若,求证:直线
平面
;
(2)若,二面角
平面角的大小为
,求
的值。
、
、
为
的三内角,且其对边分别为a、b、c,若
,
,且
.
(1)求角;
(2)若,三角形面积
,求
的值.
对,不等式
所表示的平面区域为
,把
内的整点(横坐标与纵坐标均为整数的点)按其到原点的距离从近到远排成点列:
(1)求,
;
(2)数列满足
,且
时
.证明当
时,
;
(3)在(2)的条件下,试比较与4的大小关系.