设圆
过点P(0,2), 且在
轴上截得的弦RG的长为4.
(1)求圆心
的轨迹E的方程;
(2)过点
(0,1),作轨迹
的两条互相垂直的弦
、
,设
、
的中点分别为
、
,试判断直线
是否过定点?并说明理由.
如图,四棱锥
中,底面
为平行四边形,
,
,
⊥底面
.
(1)证明:平面
平面
;
(2)若二面角
为
,求
与平面
所成角的正弦值。
如图所示,四边形ABCD是边长为1的正方形,MD⊥平面ABCD,NB⊥平面ABCD,且MD=NB=1,E为BC的中点.
(1)求异面直线NE与AM所成角的余弦值;
(2)在线段AN上是否存在点S,使得ES⊥平面AMN?若存在,求线段AS的长;若不存在,请说明理由.
设函数
(a、b、c、d∈R)图象C关于原点对称,且x=1时,
取极小值
(1)求f(x)的解析式;
(2)当
时,求函数f(x)的最大值
已知
(1)求
;
(2)
.
已知函数
,若
在
=1处的切线方程为
。
(1) 求
的解析式及单调区间;
(2) 若对任意的

都有
≥
成立,求函数
=
的最值。