某电信部门执行的新的电话收费标准中,其中本地网营业区内的通话费标准:前3分钟为0.20元(不足3分钟按3分钟计算),以后的每分钟收0.10元(不足1分钟按1分钟计算。)在一次实习作业中,某同学调查了A、B、C、D、E五人某天拨打的本地网营业区内的电话通话时间情况,其原始数据如下表所示:
|
A |
B |
C |
D |
E |
第一次通话时间 |
3分 |
3分45秒 |
3分55秒 |
3分20秒 |
6分 |
第二次通话时间 |
0分 |
4分 |
3分40秒 |
4分50秒 |
0分 |
第三次通话时间 |
0分 |
0分 |
5分 |
2分 |
0分 |
应缴话费(元) |
|
|
|
|
|
⑴在上表中填写出各人应缴的话费;
⑵设通话时间为t分钟,试根据上表完成下表的填写(即这五人在这一天内的通话情况统计表):
时间段 |
频数累计 |
频数 |
频率 |
累计频率 |
0<t≤3 |
┯ |
2 |
0.2 |
0.2 |
3<t≤4 |
|
|
|
|
4<t≤5 |
|
|
|
|
5<t≤6 |
|
|
|
|
合计 |
正正 |
|
|
|
⑶若该本地网营业区原来执行的电话收费标准是:每3分钟为0.20元(不足3分钟按3分钟计算)。问这五人这天的实际平均通话费与原通话标准下算出的平均通话费相比,是增多了还是减少了?增或减了多少?
(本小题满分13分)已知函数.
(Ⅰ)若,求
在
上的最小值;
(Ⅱ)若在区间
上的最大值大于零,求a的取值范围.
(本小题满分13分)在一次射击游戏中,规定每人最多射击3次;在A处击中目标得3分,在B,C处击中目标均得2分,没击中目标不得分;某同学在A处击中目标的概率为,在B,C处击中目标的概率均为
.
该同学依次在A,B,C处各射击一次,各次射击之间没有影响,求在一次游戏中:
(Ⅰ)该同学得4分的概率;
(Ⅱ)该同学得分少于5分的概率.
(本小题满分13分)
已知数列中,
.
(Ⅰ)计算的值;
(Ⅱ)根据计算结果猜想{an}的通项公式,并用数学归纳法加以证明.
(本大题满分10分)选修4-5:不等式选讲
设函数
(Ⅰ)解不等式;
(Ⅱ)当,
时,证明:
.
(本小题满分10分) 选修4-4:极坐标系与参数方程
在极坐标系中曲线的极坐标方程为
,点
.以极点
为原点,以极轴为
轴正半轴建立直角坐标系.斜率为
的直线
过点
,且与曲线
交于
两点.
(Ⅰ)求出曲线的直角坐标方程和直线
的参数方程;
(Ⅱ)求点到两点
的距离之积.