如下图,在空间直角坐标系中BC=2,原点O是BC的中点,点A的坐标是(,
,0),点D在平面yoz上,且
BDC=900,
DCB=300,求点D的坐标。
已知矩阵(
,
为实数).若矩阵
属于特征值2,3的一个特征向量分别为
,
,求矩阵
的逆矩阵
.
如图,⊙O的直径AB的延长线与弦CD的延长线相交于点P,E为⊙O上一点,AE=AC, DE交AB于点F.求证:△PDF∽△POC.
已知函数.
(1)当时,求函数
的单调增区间;
(2)当时,求函数
在区间
上的最小值;
(3)记函数图象为曲线
,设点
,
是曲线
上不同的两点,点
为线段
的中点,过点
作
轴的垂线交曲线
于点
.试问:曲线
在点
处的切线是否平行于直线
?并说明理由.
已知数列,
满足
,
,
,
.
(1)求证:数列是等差数列,并求数列
的通项公式;
(2)设数列满足
,对于任意给定的正整数
,是否存在正整数
,
(
),使得
,
,
成等差数列?若存在,试用
表示
,
;若不存在,说明理由.
如图,已知,
,
,
分别是椭圆
的四个顶点,△
是一个边长为2的等边三角形,其外接圆为圆
.
(1)求椭圆及圆
的方程;
(2)若点是圆
劣弧
上一动点(点
异于端点
,
),直线
分别交线段
,椭圆
于点
,
,直线
与
交于点
.
(ⅰ)求的最大值;
(ⅱ)试问:..,
两点的横坐标之和是否为定值?若是,求出该定值;若不是,说明理由.