在直三棱柱ABC—A1B1C1中,CA=CB=CC1=2,∠ACB=90°,E、F分别是BA、BC的中点,G是AA1上一点,且AC1⊥EG.
(Ⅰ)确定点G的位置;
(Ⅱ)求直线AC1与平面EFG所成角θ的大小.
(本题12分)已知函数.
(1)判断函数的奇偶性;
(2)求该函数的值域;
(3)证明是
上的增函数.
(本题10分) 已知函数.
(1)讨论在区间
上的单调性,并证明你的结论;
(2)当时,求
的最大值和最小值.
(本小题满分14分)
已知数列中,
,
,其前
项和
满足
(
,
).
(1)求数列的通项公式;
(2)设为非零整数,
),试确定
的值,使得对任意
,都有
成立.
(本小题满分14分)
设函数.
(1)求函数的单调递增区间;
(2)若关于的方程
在区间
内恰有两个相异的实根,求实数
的取值范围.
(本小题满分14分)
已知曲线上任意一点
到两个定点
和
的距离之和为4.
(1)求曲线的方程;
(2)设过的直线
与曲线
交于
、
两点,且
(
为坐标原点),求直线
的方程.