如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区.规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端O和A到该圆上任意一点的距离均不少于80m.经测量,点A位于点O正北方向60m处,点C位于点O正东方向170m处(OC为河岸),.以
所在直线为
轴,以
所在直线为
轴建立平面直角坐标系.
(Ⅰ)求所在直线的方程及新桥BC的长;
(Ⅱ)当OM多长时,圆形保护区的面积最大?
并求此时圆的方程.
(本小题满分12分)已知某几何体的直观图和三视图如下图所示, 其正视图为矩形,左视图为等腰直角三角形,俯视图为直角梯形.
(Ⅰ)证明: ⊥平面
;
(Ⅱ)求平面与平面
所成角的余弦值;
(本小题满分12分)已知函数.
(Ⅰ)设函数的图像的顶点的纵坐标构成数列
,求证:
为等差数列;
(Ⅱ)设函数的图像的顶点到
轴的距离构成数列
,求
的前
项和
.
(本小题满分12分)已知函数
的图象的一部分如下图所示. (Ⅰ)求函数的解析式;(Ⅱ)当
时,求函数
的最大值与最小值及相应的
的值.
.【必做题】本题满分10分.解答时应写出文字说明、证明过程或演算步骤.
求证:对于任意的正整数,
必可表示成
的形式,其中
.
.【必做题】本题满分10分.解答时应写出文字说明、证明过程或演算步骤.
由数字1,2,3,4组成五位数,从中任取一个.
(1)求取出的数满足条件:“对任意的正整数,至少存在另一个正整数
,且
,使得
”的概率;
(2)记为组成该数的相同数字的个数的最大值,求
的概率分布列和数学期望.