游客
题文

如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区.规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端O和A到该圆上任意一点的距离均不少于80m.经测量,点A位于点O正北方向60m处,点C位于点O正东方向170m处(OC为河岸),.以所在直线为轴,以所在直线为轴建立平面直角坐标系.
(Ⅰ)求所在直线的方程及新桥BC的长;
(Ⅱ)当OM多长时,圆形保护区的面积最大?
并求此时圆的方程.

科目 数学   题型 解答题   难度 中等
知识点: 圆的方程的应用
登录免费查看答案和解析
相关试题

已知半径为的球内有一个内接正方体(即正方体的顶点都在球面上).
(1)求此球的体积;
(2)求此球的内接正方体的体积;
(3)求此球的表面积与其内接正方体的全面积之比.

已知函数满足:对任意,都有成立,且时,
(1)求的值,并证明:当时,
(2)判断的单调性并加以证明;
(3)若上递减,求实数的取值范围.

设函数 ().
(1)若为偶函数,求实数的值;
(2)已知,若对任意都有恒成立,求实数的取值范围.

某自来水厂的蓄水池存有400吨水,水厂每小时可向蓄水池中注水60吨,同时蓄水池又向居民小区不间断供水,小时内供水总量为吨(),从供水开始到第几小时时,蓄水池中的存水量最少?最少水量是多少吨?

已知函数
(1)求函数定义域和函数图像所过的定点;
(2)若已知时,函数最大值为2,求的值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号