某汽车生产企业上年度生产一品牌汽车的投入成本为10万元/辆,出厂价为13万元/辆,年销售量为5000辆。本年度为适应市场需求,计划提高产品档次,适当增加投入成本,若每辆车投入成本增加的比例为x(0<x<1),则出厂价相应提高的比例为0.7x,年销售量也相应增加。已知年利润=(每辆车的出厂价—每辆车的投入成本)×年销售量。
(I)若年销售量增加的比例为0.4x,为使本年度的年利润比上年度有所增加,则投入成本增加的比例x应在什么范围内?
(II)年销售量关于x的函数为为何值时,本年度的年利润最大?最大利润为多少?
如图,三角形中,
,
是边长为
的正方形,平面
⊥底面
,若
、
分别是
、
的中点.
(1)求证:∥底面
;
(2)求证:⊥平面
;
(3)求几何体的体积.
在△中,
是角
对应的边,向量
,
,且
.
(1)求角;
(2)函数的相邻两个极值的横坐标分别为
、
,求
的单调递减区间.
已知关于x的不等式(其中
).
(1)当时,求不等式的解集;
(2)若不等式有解,求实数的取值范围
在平面直角坐标系中,曲线C1的参数方程为(a>b>0,
为参数),以Ο为极点,x轴的正半轴为极轴建立极坐标系,曲线C2是圆心在极轴上且经过极点的圆,已知曲线C1上的点M
对应的参数
=
,
与曲线C2交于点D
(1)求曲线C1,C2的方程;
(2)A(ρ1,θ),Β(ρ2,θ+)是曲线C1上的两点,求
的值。
已知PQ与圆O相切于点A,直线PBC交圆于B、C两点,D是圆上一点,且AB∥CD,DC的延长线交PQ于点Q.
(1)求证:
(2)若AQ=2AP,AB=,BP=2,求QD.