设数列的前
项和为
,已知
(n∈N*).
(Ⅰ)求数列的通项公式;
(Ⅱ)设,数列
的前
项和为
,若存在整数
,使对任意n∈N*且n≥2,都有
成立,求
的最大值;
(Ⅲ)令,数列
的前
项和为
,求证:当n∈N*且n≥2时,
.
(本小题满分14分)已知函数,试证明f(x)在区间(-2,+∞)上是增函数,并求出该函数在区间[1,4]上的最大值和最小值.
(本小题满分14分)已知函数,
且
.
(Ⅰ)求的定义域;(Ⅱ)判断
的奇偶性并予以证明;
(Ⅲ)当时,求使
的
的取值范围.
(本小题满分14分)某公司试销一种成本单价为500元的新产品,规定试销时销售单价不低于成本单价,又不高于800元.经试销调查,发现销售量y(件)与销售单价x(元)之间的关系可近似看作一次函数y=kx+b(k≠0),函数图象如图所示.
(1)根据图象,求一次函数y=kx+b(k≠0)的表达式;
(2)设公司获得的毛利润(毛利润=销售总价-成本总价)为S元.试问销售单价定为多少时,该公司可获得最大毛利润?最大毛利润是多少?此时的销售量是多少?
(本小题满分13分)求下列函数的定义域和值域
(I);(II)
;(III)
.
(本小题满分12分)已知U=R,且A={x│-4<x<4},,
求(I);(II)(CUA)∩B;(III)
.