有甲、乙两个工厂,甲厂位于一直线河岸的岸边A处,乙厂与甲厂在河的同侧,乙厂位于离河岸40km的B处,乙厂到河岸的垂足D与A相距50km,两厂要在此岸边合建一个供水站C,从供水站到甲厂和乙厂的水管费用分别为每千米3a元和5a元,问供水站C建在岸边何处才能使水管费用最省?
已知函数是奇函数,且
.
(1) 求的表达式;(2) 设
;
记,求S的值.
已知函数的定义域为集合
,
.
(1)若,求实数a的取值范围;
(2)若全集,a=
,求
及
.
(本题12分)如图,在侧棱锥垂直底面的四棱锥ABCD-A1B1C1D1中,AD∥BC,
AD⊥AB,AB=。AD=2,BC=4,AA1=2,E是DD1的中点,F是平面B1C1E
与直线AA1的交点。
(1)证明:(i)EF∥A1D1;
(ii)BA1⊥平面B1C1EF;
(2)求BC1与平面B1C1EF所成的角的正弦值。
(本题8分)如图,ABCD是正方形,O是正方形的中心, PO底面ABCD,E是PC的中点。
求证:(1)PA∥平面BDE(2)平面PAC平面BDE
(本题6分)已知圆台的母线长为4 cm,母线与轴的夹角为30°,上底面半径是下底面半径的,求这个圆台的侧面积.