已知为坐标原点,
=(
),
=(1,
),
.
(1)若的定义域为[-
,
],求y=
的单调递增区间;
(2)若的定义域为[
,
],值域为[2,5],求
的值.
计算下列各式的值:
(1);(2)
.
已知的定义域是[0,4].
(1)若f(x)的极值点是x=3,求a的值;
(2)若f(x)是单峰函数,求a的取值范围.
设f(x)是定义在[0,1]上的函数,若存在x*∈(0,1),使得f(x)在[0,x•]上单调递增,在[x•,1]单调递减,则称f(x)为[0,1]上的单峰函数,x•为峰点,包含峰点的区间为含峰区间.
对任意的[0,1]上的单峰函数f(x),下面研究缩短其含峰区间长度的方法.
(Ⅰ)证明:对任意的x1,x2∈(0,1),x1<x2,若f(x1)≥f(x2),则(0,x2)为含峰区间;若f(x1)≤f(x2),则(x1,1)为含峰区间;
(Ⅱ)对给定的r(0<r<0.5),证明:存在x1,x2∈(0,1),满足x2﹣x1≥2r,使得由(Ⅰ)确定的含峰区间的长度不大于0.5+r;
(Ⅲ)选取x1,x2∈(0,1),x1<x2由(Ⅰ)可确定含峰区间为(0,x2)或(x1,1),在所得的含峰区间内选取x3,由x3与x1或x3与x2类似地可确定是一个新的含峰区间.在第一次确定的含峰区间为(0,x2)的情况下,试确定x1,x2,x3的值,满足两两之差的绝对值不小于0.02且使得新的含峰区间的长度缩短到0.34.
(区间长度等于区间的右端点与左端点之差).
分解因式
(1)a4﹣6a2﹣27;
(2)a4+4b2c2﹣a2b2﹣4a2c2.
如图,对于大于1的自然数m的n次幂可用奇数进行如图所示的“分裂”,仿此,记53的“分裂”中的最小数为a,而52的“分裂”中最大的数是b,则a+b=.