有9本不同的课外书,分给甲、乙、丙三名同学,求在下列条件下,各有多少种分法?
(1)甲得4本,乙得3本,丙得2本;
(2)一人得4本,一人得3本,一人得2本;
(3)甲、乙、丙各得3本.
(本小题满分13分)
为加强大学生实践、创新能力和团队精神的培养,促进高等教育教学改革,教育部门主办了全国大学生智能汽车竞赛. 该竞赛分为预赛和决赛两个阶段,参加决赛的队伍按照抽签方式决定出场顺序.通过预赛,选拔出甲、乙等五支队伍参加决赛.
(Ⅰ)求决赛中甲、乙两支队伍恰好排在前两位的概率;
(Ⅱ)若决赛中甲队和乙队之间间隔的队伍数记为,求
的分布列和数学期望.
(本小题满分13分)
在中,角
,
,
所对的边分别为
,
,
,
,
.
(Ⅰ)求及
的值;(Ⅱ)若
,求
的面积.
已知椭圆经过点
,
为坐标原点,平行于
的直线
在
轴上的截距为
.
(1)当时,判断直线
与椭圆的位置关系(写出结论,不需证明);
(2)当时,
为椭圆上的动点,求点
到直线
距离的最小值;
(3)如图,当交椭圆于
、
两个不同点时,求证:直线
、
与
轴始终围成一个等腰三角形.
如图,平面
,四边形
是矩形,
,
与平面
所成角是
,点
是
的中点,点
在矩形
的边
上移动.
(1)证明:无论点在边
的何处,都有
;
(2)当等于何值时,二面角
的大小为
.
(本小题满分14分)设椭圆方程(
),
为椭圆右焦点,
为椭圆在短轴上的一个顶点,
的面积为6,(
为坐标原点);
(1)求椭圆方程;
(2)在椭圆上是否存在一点,使
的中垂线过点
?若存在,求出
点坐标;若不存在,说明理由.