某校有在校高中生共1600人,其中高一学生520人,高二学生500人,高三学生580.如果想通过抽查其中的80人,来调查学生的消费情况,考虑到学生的年级高低消费情况有明显差别,而同一年级内消费情况差异较小,问应当采用怎样的抽样方法?高三学生中应抽查多少人?
已知椭圆C:的左右焦点分别为
,点B为椭圆与
轴的正半轴的交点,点P在第一象限内且在椭圆上,且与
轴垂直,
(1)求椭圆C的方程;
(2)设点B关于直线的对称点E(异于点B)在椭圆C上,求
的值。
已知三点
(1).求以为焦点且过点P的椭圆的标准方程;
(2)设点P, 关于直线
的对称点分别为
,求以
为焦点且过点
的双曲线的标准方程。
已知是圆
上满足条件
的两个点,其中O是坐标原点,分别过A、B作
轴的垂线段,交椭圆
于
点,动点P满足
.(1)求动点P的轨迹方程;(2)设
和
分别表示
和
的面积,当点P在
轴的上方,点A在
轴的下方时,求
+
的最大值。
已知函数.(1)若
在R上为增函数,求实数
的取值范围;(2)若当
时,不等式
恒成立,求实数
的取值范围。
已知抛物线上一点M(1,1),动弦ME、MF分别交
轴与A、B两点,且MA=MB。证明:直线EF的斜率为定值。