已知向量a=(3sinα,cosα),b=(2sinα, 5sinα-4cosα),α∈(),且a⊥b.
(1)求tanα的值;(2)求cos()的值.
在数列和
中,已知
.
(1)求数列和
的通项公式;
(2)设,求数列
的前n项和
.
已知四棱锥的底面
是等腰梯形,
且
分别是
的中点.
(1)求证:;
(2)求二面角的余弦值.
已知向量,
,且
.
(1)将表示为
的函数
,并求
的单调递增区间;
(2)已知分别为
的三个内角
对应的边长,若
,且
,
,求
的面积.
定义在上的函数
,如果满足:对任意
,存在常数
,都有
成立,则称
是
上的有界函数,其中
称为函数
的一个上界.已知函数
,
.
(1)若函数为奇函数,求实数
的值;
(2)在(1)的条件下,求函数在区间
上的所有上界构成的集合;
(3)若函数在
上是以3为上界的有界函数,求实数
的取值范围.
已知圆的方程:
,其中
.
(1)若圆C与直线相交于
,
两点,且
,求
的值;
(2)在(1)条件下,是否存在直线,使得圆上有四点到直线
的距离为
,若存在,求出
的范围,若不存在,说明理由.