围建一个面积为
的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为
的进出口,如图所示,已知旧墙的维修费用为45元
,新墙的造价为180元
,设利用的旧墙的长度为
(单位:元).
(Ⅰ)将
表示为
的函数;
(Ⅱ)试确定
,使修建此矩形场地围墙的总费用最小,并求出最小总费用.
如图,四棱锥的底面
为一直角梯形,侧面PAD是等边三角形,其中
,
,平面
底面
,
是
的中点.
(1)求证://平面
;
(2)求证:;
(3)求与平面
所成角的正弦值。
已知曲线C上的动点P()满足到定点A(-1,0)的距离与到定点B(1,0)距离之比为
(1)求曲线C的方程。
(2)过点M(1,2)的直线与曲线C交于两点M、N,若|MN|=4,求直线
的方程。
已知下列三个方程:至少有一个方程有实数根.求实数
的取值范围.
设命题p:实数x满足,其中
,命题
实数
满足
.
(1)若且
为真,求实数
的取值范围;
(2)若是
的充分不必要条件,求实数a的取值范围.
如图已知抛物线:
过点
,直线
交
于
,
两点,过点
且平行于
轴的直线分别与直线
和
轴相交于点
,
.
(1)求的值;
(2)是否存在定点,当直线
过点
时,△
与△
的面积相等?若存在,求出点
的坐标;若不存在,请说明理由.