游客
题文

(本题满分13分)如图,棱柱ABCD—A1B1C1D1的所有棱长都等于2,∠ABC=60°,平面AA1C1C⊥平面ABCD∠A1AC=60°.  (Ⅰ)证明:BD⊥AA1
(Ⅱ)求二面角D—A1A—C的平面角的余弦值; (Ⅲ)在直线CC1上是否存在点P,使BP//平面DA1C1?若存在,求出点P的位置;若不存在,说明理由.

科目 数学   题型 解答题   难度 容易
登录免费查看答案和解析
相关试题

已知 a n 为等差数列, b n 为等比数列, a 1 = b 1 = 1 , a 5 = 5 a 4 - a 3 , b 5 = 4 b 4 - b 3

(Ⅰ)求 a n b n 的通项公式;

(Ⅱ)记 a n 的前 n 项和为 S n ,求证: S n S n + 2 < S n + 1 2 n N *

(Ⅲ)对任意的正整数 n ,设 c n = 3 a n - 2 b n a n a n + 2 , n 为奇数 , a n - 1 b n + 1 , n 为偶数 . 求数列 c n 的前 2 n 项和.

已知椭圆 x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 ) 的一个顶点为 A ( 0 , - 3 ) ,右焦点为 F ,且 | OA | = | OF | ,其中 O 为原点.

(Ⅰ)求椭圆方程;

(Ⅱ)已知点 C 满足 3 OC = OF ,点 B 在椭圆上( B 异于椭圆的顶点),直线 AB 与以 C 为圆心的圆相切于点 P ,且 P 为线段 AB 的中点.求直线 AB 的方程.

如图,在三棱柱 ABC - A 1 B 1 C 1 中, C C 1 平面 ABC , AC BC , AC = BC = 2 C C 1 = 3 ,点 D ,  E 分别在棱 A A 1 和棱 C C 1 上,且 AD = 1  CE = 2 ,  M 为棱 A 1 B 1 的中点.

(Ⅰ)求证: C 1 M B 1 D

(Ⅱ)求二面角 B - B 1 E - D 的正弦值;

(Ⅲ)求直线 AB 与平面 D B 1 E 所成角的正弦值.

ABC 中,角所对的边分别为 a , b , c .已知 a = 2 2 , b = 5 , c = 13

(Ⅰ)求角 C 的大小;

(Ⅱ)求 sin A 的值;

(Ⅲ)求 sin 2 A + π 4 的值.

已知 1 < a 2 ,函数 f x = e x - x - a ,其中e=2.71828…为自然对数的底数.

(Ⅰ)证明:函数 ( 0 + ) 上有唯一零点;

(Ⅱ)记x0为函数 ( 0 + ) 上的零点,证明:

(ⅰ) a - 1 x 0 2 ( a - 1 )

(ⅱ) x 0 f ( e x 0 ) ( e - 1 ) ( a - 1 ) a

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号