(本小题满分12分)
的内切圆与三边AB、BC、CA的切点分别为D、E、F,已知
,内切圆圆心
,设点A的轨迹为L。 (1)求L的方程;
(2)过点C的动直线
交曲线L于不同的两点M、N,问在
轴上是否存在一定点Q(Q不与C重合),使
恒成立,若存在,试求出Q点的坐标,若不存在,说明理由。
(本小题满分10分)选修4-5:不等式选讲
已知,且
,若
恒成立,
(1)求的最小值;
(2)若对任意的
恒成立,求实数
的取值范围.
(本小题满分10分)选修4—4:坐标系与参数方程
已知曲线的极坐标方程是
.以极点为平面直角坐标系的原点,极轴为
轴的正半轴,建立平面直角坐标系,直线
的参数方程是
是参数
.
(1)将曲线的极坐标方程化为直角坐标方程;
(2)若直线与曲线
相交于
、
两点,且
,求直线的倾斜角
的值.
(本小题满分10分)选修4—1:几何证明选讲
如图所示,PA为圆O的切线,A为切点,PBC是过点O的割线,PA=10,PB=5,∠BAC的平分线与BC和圆O分别交于点D和E.
(1)求证:;
(2)求AD·AE的值.
(本小题满分12分)已知函数,
,其中
.
(1)若存在,使得
成立,求实数M的最大值;
(2)若对任意的,都有
,求实数
的取值范围.
(本小题满分12分)已知椭圆上任意一点到两焦点
距离之和为
,离心率为
.
(1)求椭圆的标准方程;
(2)若直线的斜率为
,直线
与椭圆C交于
两点.点
为椭圆上一点,求△PAB的面积的最大值.