为了让学生了解更多“社会法律”知识,
分组 |
频数 |
频率 |
60.5~70.5 |
1 |
0.16 |
70.5~80.5 |
10 |
2 |
80.5~90.5 |
18 |
0.36 |
90.5~100.5 |
3 |
4 |
合计 |
50 |
1 |
某中学举行了一次“社会法律知识竞赛”,
共有800名学生参加了这次竞赛. 为了解
本次竞赛成绩情况,从中抽取了部分学
生的成绩(得分均为整数,满分为100
分)进行统计.请你根据尚未完成并有
局部污损的频率分布表,解答下列问题:
(1)若用系统抽样的方法抽取50个样本,
现将所有学生随机地编号为000,001,002,…,799,试写出第二组第一位学生的编号 ;
(2)填充频率分布表的空格1 2 3 4 并作出频率分布直方图;
(3)若成绩在85.5~95.5分的学生为二等奖,问参赛学生中获得二等奖的学生约有多少人?
(本小题满分10分)选修4-4:坐标系与参数方程:
以直角坐标系的原点为极点,
轴的正半轴为极轴,且两个坐标系取相等的长度单位.已知直线
的参数方程为
(
为参数,
),曲线
的极坐标方程为
.
(Ⅰ)求曲线的直角坐标方程;
(Ⅱ)设直线与曲线
相交于
、
两点,当
变化时,求
的最小值.
(本小题满分10分)选修4-1:几何证明选讲:
如图所示,已知与⊙
相切,
为切点,过点
的割线交圆于
两点,弦
,
相交于点
,
为
上一点,且
.
(Ⅰ)求证:;
(Ⅱ)若,求
的长.
(本小题满分12分) 设函数
(1)当时,求函数
的单调区间;
(2)令<
≤
,其图像上任意一点
处切线的斜率
≤
恒成立,求实数
的取值范围;
(3)当时,方程
在区间
内有唯一实数解,求实数
的取值范围.
(本小题满分12分)椭圆:
的离心率为
,长轴端点与短轴端点间的距离为
.
(1)求椭圆的方程;
(2)设过点的直线
与椭圆
交于
两点,
为坐标原点,若
为直角三角形,求直线
的斜率.
(本小题满分12分)在如图所示的空间几何体中,平面平面
,
与
是边长为
的等边三角形,
,
和平面
所成的角为
,且点
在平面
上的射影落在
的平分线上.
(Ⅰ)求证:平面
;
(Ⅱ)求二面角的余弦值.