游客
题文

对于数列 { u n } ,若存在常数 M > 0 ,对任意的 n N + ,恒有 u n + 1 - u n + u n - u n - 1 + . . . + u 2 - u 1 M ,则称数列 { u n } B - 数列.
(Ⅰ)首项为1,公比为 - 1 2 的等比数列是否为 B - 数列?请说明理由;
(Ⅱ)设 S n 是数列 { x n } 的前 n 项和,给出下列两组判断:
A组:①数列 { x n } B - 数列;②数列 { x n } 不是 B - 数列;
B组:③数列 { S n } B - 数列;④数列 { S n } 不是 B - 数列.
请以其中一组中的一个论断为条件,另一组中的一个论断为结论组成一个命题。判断所给命题的真假,并证明你的结论;
(Ⅲ)若数列 { a n } B - 数列,证明:数列 { a n 2 } 也是 B - 数列.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

如右图,简单组合体ABCDPE,其底面ABCD为边长为的正方形,PD⊥平面ABCD,EC∥PD,且PD=2EC=.

(1)若N为线段PB的中点,求证:EN//平面ABCD;
(2)求点到平面的距离.

已知数列的前n项和为,且,(=1,2,3…)
(1)求数列的通项公式;
(2)记,求

已知向量,且
(1)求的值;
(2 )求的值.

已知关于的方程:.
(1)当为何值时,方程C表示圆。
(2)若圆C与直线相交于M,N两点,且|MN|=,求的值。
(3)在(2)条件下,是否存在直线,使得圆上有四点到直线的距离为,若存在,求出的范围,若不存在,说明理由。

如图,是⊙的直径,垂直于⊙所在的平面,是圆周上不同于的一动点.

(1)证明:面PAC面PBC;
(2)若,则当直线与平面所成角正切值为时,求直线与平面所成角的正弦值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号