如图所示,在光滑水平面上有两辆车处于静止状态,其上分别站有甲、乙两个小孩,每辆车和小孩的总质量均为M,甲车上的小孩拿着一质量为m的球。现小孩甲将球抛给乙,乙接住后又抛回给甲,如此重复多次,最后球又回到了甲的手中,求甲、乙两车最后的速率之比。
如图,一透明半圆柱体折射率为,半径为R、长为L。一平行光束从半圆柱体的矩形表面垂直射入,从部分柱面有光线射出。球该部分柱面的面积S。
麦克斯韦在1865年发表的《电磁场的动力学理论》一文中揭示了电、磁现象与光的内在联系及统一性,即光是电磁波。
(1)一单色光波在折射率为
的介质中传播,某时刻电场横波图象如图1所示.求该光波的频率。
(2)图2表示两面平行玻璃砖的截面图,一束平行于
边的单色光入射到
界面上,
、
是其中的两条平行光线。光线
在玻璃砖中的光路已给出。画出光线
从玻璃砖中首次出射的光路图.并标出出射光线与界面法线夹角的度数。
一棱镜的截面为直角三角形ABC,∠A=30o,斜边AB=a。棱镜材料的折射率为n=。在此截面所在的平面内,一条光线以45o的入射角从AC边的中点M射入棱镜射出的点的位置(不考虑光线沿原来路返回的情况)。
材料的电阻率ρ随温度变化的规律为,其中
称为电阻温度系数,
是材料在t="0" ℃时的电阻率,在一定的温度范围内
是与温度无关的常量。金属的电阻一般随温度的增加而增加,有正温度系数;而某些非金属如碳等则相反,具有负温数系数。利用具有正负温度系数的两种材料的互补特性,可制成阻值在一定温度范围内不随温度变化的电阻。已知:在0 ℃时,铜的电阻率为
,碳的电阻率为
,在0 ℃附近,铜的电阻温度系数为3.9×10–3 ℃-1,碳的电阻温度系数为
。将横截面积相同的碳棒与铜棒串接成长1.0 m的导体,要求其电阻在0 ℃附近不随温度变化,求所需碳棒的长度(略碳棒和铜棒的尺寸随温度的变化).
如图(
)所示,一个电阻值为
,匝数为
的圆形金属线与阻值为
的电阻
连结成闭合回路。线圈的半径为
. 在线圈中半径为
的圆形区域存在垂直于线圈平面向里的匀强磁场,磁感应强度
随时间
变化的关系图线如图(
)所示。图线与横、纵轴的截距分别为
和
. 导线的电阻不计。求0至
时间内
(1)通过电阻
上的电流大小和方向;
(2)通过电阻
上的电量
及电阻
上产生的热量。