游客
题文

氘在化学、医药学及生物学等领域有广泛使用,也是制造氢弹和中子弹最重要的原料,1967年6月17日我国爆炸的第一颗氢弹用的炸药就是氘化锂。其实海洋是一个能源库,已知每1 L海水中大约有0.03 g氘,氘在海水中以重水(D2O)的形式存在。
(1)1 000 g氘化锂(6Li2H相对分子质量为8)的爆炸力相当于5万吨烈性TNT炸药。则生产90 g氘化锂至少需处理海水多少升?
(2)从海水中提取重水可用电解法获得氘气(D2),那么将1 L海水中所含重水的氘气全部电解出来用于制取氘时,理论上至少消耗多少电能?(已知断开1 mol化学键所吸收的能量或形成1 mol化学所放出的能量称为键能。又已知氧氘键的键能是463 kJ·mol-1,氘氘键的键能是436 kJ·mol-1,氧氧键的键能是493 kJ·mol-1)。

科目 化学   题型 计算题   难度 容易
知识点: 乙炔的燃烧
登录免费查看答案和解析
相关试题

(1)N2(g)+3H2(g)2NH3(g)△H=-94.4kJ·mol-1。恒容时,体系中各物质浓度随时间变化的曲线如图示。

①在1L容器中发生反应,前20min内,v(NH3)=,放出的热量为
②25min时采取的措施是
③时段III条件下,反应的平衡常数表达式为(用具体数据表示)。
(2)电厂烟气脱氮的主反应①:4NH3(g)+6NO(g)5N2(g)+6H2O(g)△H<0,副反应②:2NH3(g)+8NO(g)5N2O(g)+3H2O(g)△H>0。平衡混合气中N2与N2O含量与温度的关系如右图。请回答:在400K~600K时,平衡混合气中N2含量随温度的变化规律是,导致这种规律的原因是(任答合理的一条原因)。

(3)直接供氨式燃料电池是以NaOH溶液为电解质的。电池反应为:4NH3+3O2=2N2+6H2O,则负极电极反应式为

氢是一种理想的绿色清洁能源,氢气的制取与储存是氢能源利用领域的研究热点。利用FeO/Fe3O4循环制氢,已知:
H2O(g)+3FeO(s)Fe3O4(s)+4H2(g)△H=akJ/mol(I)
2Fe3O4(s)6FeO(s)+O2(g)△H=bkJ/mol(II)
下列坐标图分别表示FeO的转化率(图-1 )和一定温度时,H2出生成速率[细颗粒(直径0.25 mm),粗颗粒(直径3 mm)](图-2)。

(1)反应:2H2O(g)=2H2(g)+O2(g)△H=(用含a、b代数式表示);
(2)上述反应b>0,要使该制氢方案有实际意义,从能源利用及成本的角度考虑,实现反应II可采用的方案是:
(3)900°C时,在两个体积均为2.0L密闭容器中分别投人0.60molFeO和0.20mol H2O(g)甲容器用细颗粒FeO、乙容器用粗颗粒FeO。
①用细颗粒FeO和粗颗粒FeO时,H2生成速率不同的原因是:
②细颗粒FeO时H2O(g)的转化率比用粗颗粒FeO时H2O(g)的转化率(填“大”或“小”或“相等”);
③求此温度下该反应的平衡常数K(写出计箅过程,保留两位有效数字)。
(4)在下列坐标图3中画出在1000°C、用细颗粒FeO时,H2O(g)转化率随时间变化示意图(进行相应的标注)。

乙醇汽油是被广泛使用的新型清洁燃料,工业生产乙醇的一种反应原理为:
2CO(g) + 4H2(g)CH3CH2OH(g) + H2O(g)△H =" —256.1" kJ·mol1
已知:CO(g) + H2O(g)CO2(g)+H2(g)△H=" —41.2" kJ·mol1
(1)以CO2(g)与H2(g)为原料也可合成乙醇,其热化学方程式如下:
2CO2(g) +6H2(g)CH3CH2OH(g) +3H2O(g)△H =
(2)汽车使用乙醇汽油并不能减少NOx的排放,这使NOx的有效消除成为环保领域的重要课题。
①某研究小组在实验室以Ag– ZSM– 5为催化剂,测得NO转化为N2的转化率随温度变化情况如下图。若不使用CO,温度超过800℃,发现NO的转化率降低,其可能的原因为;在n(NO)/n(C O)=1的条件下,应控制的最佳温度在左右。

②用活性炭还原法处理氮氧化物。有关反应为:C (s) +2NO2(g)N2 (g) + CO2 (g)。某研究小组向某密闭容器中加人足量的活性炭和NO,恒温( T1℃)条件下反应,反应进行到不同时间测得各物质的浓度如下:

 浓度/mol∙L1
时间/min
NO
N2
CO2
0
1.00
0
0
20
0.40
0.30
0.30
30
0.40
0.30
0.30
40
0.32
0.34
0.17
50
0.32
0.34
0.17


I.根据表中数据,求反应开始至20min以v(NO)表示的反应速率为(保留两位有效数字),T1℃时该反应的平衡常数为(保留两位有效数字)。
II.30min后,改变某一条件,反应重新达到平衡,则改变的条件可能是。下图表示CO2的逆反应速率[v(CO2)]随反应时间的变化关系图。请在图中画出在30min改变上述条件时,在40min时刻再次达到平衡的变化曲线。

甲醇是一种可再生能源,具有开发和应用的广阔前景。工业上一般以CO和H2为原料合成甲醇,该反应的热化学方程式为:CO(g)+2H2(g)CH3OH(g)△H1=-116 kJ·mol-1
(1)下列有关上述反应的说法正确的是________。
a.恒温、恒容条件下,容器内的压强不发生变化则可逆反应达到平衡
b.一定条件下,H2的消耗速率是CO的消耗速率的2倍时可逆反应达到平衡
c.保持容器体积不变,升高温度可提高CO的转化率
d.使用合适的催化剂能缩短达到平衡的时间并提高CH3OH的产量
(2)在容积为1L的恒容容器中,分别研究在230℃、250℃、270℃三种温度下合成甲醇的规律。右图是上述三种温度下不同的H2和CO的起始组成比(起始时CO的物质的量均为1mol)与CO平衡转化率的关系。

①在上述三种温度中,曲线Z对应的温度是
②利用图中a点对应的数据,计算该反应在对应温度下的平衡常数K (写出计算过程)。
③在答题卡相应位置上画出:上述反应达到平衡后,减小体系压强至达到新的平衡过程中,正逆反应速率与时间的变化关系图并标注。

(3)已知:CO(g)+O2(g)=CO2(g)△H2=-283 kJ·mol-1
H2(g)+O2(g)=H2O(g) △H3=-242 kJ·mol-1
则表示1mol气态甲醇完全燃烧生成CO 2和水蒸气时的热化学方程式为

甲烷和氨在国民经济中占有重要地位。
(1)制备合成氨原料气H2,可用甲烷蒸汽转化法,主要转化反应如下:
CH4(g) + H2O(g) CO(g) + 3H2(g)ΔH =" +206.2" kJ/mol
CH4(g) + 2H2O(g) CO2(g) +4H2(g)ΔH = +165.0kJ/mol
上述反应所得原料气中的CO能使氨合成催化剂中毒,必须除去。工业上常采用催化剂存在下CO与水蒸气反应生成易除去的CO2,同时又可制得等体积的氢气的方法。此反应称为一氧化碳变换反应,该反应的热化学方程式是
(2)工业生产尿素的原理是以NH3和CO2为原料合成尿素[CO(NH2)2],反应的化学方程式为:2NH3 (g)+ CO2 (g) CO(NH2)2 (l) + H2O (l),该反应的平衡常数和温度关系如下:

T / ℃
165
175
185
195
K
111.9
74.1
50.6
34.8


① 反应热ΔH(填“>”、“<”或“=”)_______0。
② 在一定温度和压强下,若原料气中的NH3和CO2的物质的量之比(氨碳比),下图是氨碳比(x)与CO2平衡转化率(α)的关系。求图中的B点处,NH3的平衡转化率。

(3)已知甲烷燃料电池的工作原理如下图所示。该电池工作时,a口放出的物质为_________,该电池正极的电极反应式为:____,工作一段时间后,当3.2g甲烷完全反应生成CO2时,有mol 电子发生转移。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号