双曲线 (a>1,b>0)的焦距为2c,直线l过点(a,0)和(0,b),且点(1,0)到直线l的距离与点(-1,0)到直线l的距离之和s≥
c.求双曲线的离心率e的取值范围.
已知向量
(1)求;
(2)当时,求
的值.
如图已知抛物线:
过点
,直线
交
于
,
两点,过点
且平行于
轴的直线分别与直线
和
轴相交于点
,
.
(1)求的值;
(2)是否存在定点,当直线
过点
时,△
与△
的面积相等?若存在,求出点
的坐标;若不存在,请说明理由.
如图,四棱锥的底面
为一直角梯形,侧面PAD是等边三角形,其中
,
,平面
底面
,
是
的中点.
(1)求证://平面
;
(2)求证:;
(3)求与平面
所成角的正弦值。
已知曲线C上的动点P()满足到定点A(-1,0)的距离与到定点B(1,0)距离之比为
(1)求曲线C的方程。
(2)过点M(1,2)的直线与曲线C交于两点M、N,若|MN|=4,求直线
的方程。
已知下列三个方程:至少有一个方程有实数根.求实数
的取值范围.