定义在R上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a、b∈R,有f(a+b)=f(a)f(b),
(1)求证:f(0)=1;(2)求证:对任意的x∈R,恒有f(x)>0;
(3)证明:f(x)是R上的增函数;(4)若f(x)·f(2x-x2)>1,求x的取值范围。
(课改班做) 如图5,等边△内接于△
,且DE//BC,已知
于点H,BC=4,AH=
,求△
的边长.
(本小题满分10分)
(平行班做)已知抛物线 y ="x2" -4与直线y =" x" + 2。
(1)求两曲线的交点;
(2)求抛物线在交点处的切线方程。
(本小题满分12分)
已知在中,角
,
,
的对边的边长分别为
,
,
,且
.
(Ⅰ)求角的大小;
(Ⅱ)现给出三个条件:①;②
;③
.
试从中选出两个可以确定的条件,写出你的选择,并以此为依据求出
的面积.(只需写出一个选定方案即可,选多种方案以第一种方案记分)
(本小题满分10分)选修4-5:不等式选讲
设(
).
(Ⅰ)当时,求函数
的定义域;
(Ⅱ)若当,
恒成立,求实数
的取值范围.
(本小题满分10分)选修4-4:坐标系与参数方程
如图,已知点,
,圆
是以
为直径的圆,直线
:
(为参数).
(Ⅰ)写出圆的普通方程并选取适当的参数改写为参数方程;
(Ⅱ)过原点作直线
的垂线,垂足为
,若动点
满足
,当
变化时,求点
轨迹的参数方程,并指出它是什么曲线.