已知函数的定义域为
,且
. 设点
是函数图象上的任意一点,过点
分别作直线
和
轴的垂线,垂足分别为
.
(1)求的值;
(2)问:是否为定值?若是,则求出该定值,若不是,则说明理由;
(3)设为坐标原点,求四边形
面积的最小值.
(本小题满分14分)
已知函数为常数,数列
满足:
,
,
.
(1)当时,求数列
的通项公式;
(2)在(1)的条件下,证明对有:
;
(3)若,且对
,有
,证明:
.
(本小题满分14分)
如图,设点、
分别是椭圆
的左、右焦点,
为椭圆
上任意一点,且
最小值为
.
(1)求椭圆的方程;
(2)若动直线均与椭圆
相切,且
,试探究在
轴上是否存在定点
,点
到
的距离之积恒为1?若存在,请求出点
坐标;若不存在,请说明理由.
(本小题满分14分)
如图1,在等腰梯形CDEF中,CB、DA是梯形的高,,
,现将梯形沿CB、DA折起,使
且
,得一简单组合体
如图2示,已知
分别为
的中点.
图1图2
(1)求证:平面
;
(2)求证:;
(3)当多长时,平面
与平面
所成的锐二面角为
?
(本小题满分12分)
根据公安部最新修订的《机动车驾驶证申领和使用规定》:每位驾驶证申领者必须通过《科目一》(理论科目)、《综合科》(驾驶技能加科目一的部分理论)的考试.已知李先生已通过《科目一》的考试,且《科目一》的成绩不受《综合科》的影响,《综合科》三年内有5次预约考试的机会,一旦某次考试通过,便可领取驾驶证,不再参加以后的考试,否则就一直考到第5次为止.设李先生《综合科》每次参加考试通过的概率依次为0.5,0.6,0.7,0.8,0.9.
(1)求在三年内李先生参加驾驶证考试次数的分布列和数学期望;
(2)求李先生在三年内领到驾驶证的概率.
(本小题满分12分)
在中,角
所对的边分别为
,且满足
.
(1)求角的大小;
(2)求的最大值,并求取得最大值时角
的大小.