某大学开设甲、乙、丙三门选修课,学生是否选修哪门课互不影响. 已知某学生只选修甲的概率为,只选修甲和乙的概率是
,至少选修一门的概率是
,用
表示该学生选修的课程门数和没有选修的课程门数的乘积.
(1)记“函数 为
上的偶函数”为事件
,求事件
的概率;
(2)求的分布列和数学期望.
某村计划建造一个室内面积为800平米的矩形蔬菜温室,在温室内沿左右两侧与后墙内侧各保留1米的通道,沿前侧内墙保留3米宽的空地,当矩形温室的边长各为多少时,蔬菜的种植面积最大?最大的种植面积是多少?
已知椭圆C的短轴的一个端点为(0,1),离心率为.
⑴求该椭圆的方程;
⑵设直线y=x+2交椭圆C于A、B两点,求线段AB的长。
设数列{}的前n项和
=n2,{
}为等比数列,且
=
,
(
-
)=
.
⑴求数列{}和{
}的通项公式;
⑵求数列{}的前n项和。
若一个动点P(x,y)到两个定点A(-1,0)、B(1,0)的距离差的绝对值为定值2a,求点P的轨迹方程,并说明轨迹的形状.
给定两个命题,p:对任意实数x都有ax2+ax+1>0恒成立;q:关于x的方程x2-x+a=0有实数根。如果p∨q为真命题,p∧q为假命题,求实数a的取值范围