设函数,
,
其中|t|≤1,将f(x)的最小值记为g(t).
(1)求g(t)的表达式;
(2)对于区间[-1,1]中的某个t,是否存在实数a,使得不等式g(t)≤成立?如果存在,求出这样的a及其对应的t;如果不存在,请说明理由.
(本小题12分)
某企业组织职工观看了文艺晚会.企业中共有3200名职工,其中中、青、老年职工的人数比例为5: 3:2,为了解这次晚会在职工中的影响,现从职工中抽取一个容量为400的样本,应该采用哪种抽样方法更合理?中、青、老年职工应分别抽取多少人?
(本小题12分)在数学考试中,小明的成绩在90分以上的概率是0.18,在80至89分的概率是0.51,在70至79分的概率是0.15,在60至69分的概率是0.09.计算小明在数学考试中取得80分以上成绩的概率和小明考试及格的概率.
(本小题10分)计算数据5,7,7,8,10,11的标准差.
设函数f(x)=∣2x+1∣-∣x-4∣
(1)解不等式f(x)>2.
(2)求函数y=f(x)的最小值.
已知:如图所示,在△ABC中,D是BC的中点,F是BA延长线上的点,FD与AC交于点E.
求证:AE·FB=EC·FA.