如图8-3-10,轻弹簧的一端固定,另一端与滑块B相连,B静止在水平导轨上的O点,此时弹簧处于原长.另一质量与B相同的滑块A从导轨上的P点以初速度v0向B滑行,当A滑过距离l时,与B相碰.碰撞时间极短,碰后A、B粘在一起运动.设滑块A和B均可视为质点,与导轨的动摩擦因数均为μ.重力加速度为g.求:
图8-3-10
(1)碰后瞬间,A、B共同的速度大小;
(2)若A、B压缩弹簧后恰能返回到O点并停止,求弹簧的最大压缩量.
湖面上一点
上下振动,振幅为
,以
点为圆心形成圆形水波,如图所示,
、
、
三点在一条直线上,
间距离为4.0 m,
间距离为2.4 m。某时刻
点处在波峰位置,观察发现2 s后此波峰传到
点,此时
点正通过平衡位置向下运动,
间还有一个波峰。将水波近似为简谐波。
(1)求此水波的传播速度、周期和波长。
(2)以
点处在波峰位置为0时刻,某同学打算根据
间距离与波长的关系,确定
点在0时刻的振动情况,画出
点的振动图像。你认为该同学的思路是否可行?若可行,画出
点振动图像,若不可行,请给出正确思路并画出
点的振动图象。
某实验室中悬挂着一弹簧振子和一单摆,弹簧振子的弹簧和小球(球中间有孔)都套在固定的光滑竖直杆上.某次有感地震中观察到静止的振子开始振动4.0 后,单摆才开始摆动.此次地震中同一震源产生的地震纵波和横波的波长分别为10 和5.0 ,频率为1.0 .假设该实验室恰好位于震源的正上方,求震源离实验室的距离.
在绝缘水平面上放一质量m=2.0×10-3kg的带电滑块A,所带电荷量q=1.0×10-7C.在滑块A的左边l=0.3m处放置一个不带电的绝缘滑块B,质量M=4.0×10-3kg,B与一端连在竖直墙壁上的轻弹簧接触(不连接)且弹簧处于自然状态,弹簧原长S=0.05m.如图所示,在水平面上方空间加一水平向左的匀强电场,电场强度的大小为E=4.0×105N/C,滑块A由静止释放后向左滑动并与滑块B发生碰撞,设碰撞时间极短,碰撞后两滑块结合在一起共同运动并一起压缩弹簧至最短处(弹性限度内),此时弹性势能E0=3.2×10-3J,两滑块始终没有分开,两滑块的体积大小不计,与水平面间的动摩擦因数均为μ=0.5,g取10m/s2.求:
(1)两滑块碰撞后刚结合在一起的共同速度v;
(2)两滑块被弹簧弹开后距竖直墙壁的最大距离s.
如图所示,为一个实验室模拟货物传送的装置,A是一个表面绝缘质量为1kg的小车,小车置于光滑的水平面上,在小车左端放置一质量为0.1kg带电量为q=1×10-2C的绝缘货柜,现将一质量为0.9kg的货物放在货柜内.在传送途中有一水平电场,可以通过开关控制其有、无及方向.先产生一个方向水平向右,大小E1=3×102N/m的电场,小车和货柜开始运动,作用时间2s后,改变电场,电场大小变为E2=1×102N/m,方向向左,电场作用一段时间后,关闭电场,小车正好到达目的地,货物到达小车的最右端,且小车和货物的速度恰好为零。已知货柜与小车间的动摩擦因数µ=0.1,(小车不带电,货柜及货物体积大小不计,g取10m/s2)求:
⑴第二次电场作用的时间;
⑵小车的长度;
⑶小车右端到达目的地的距离.
如图所示,固定于同一条竖直线上的A、B是两个带等量异种电荷的点电荷,电荷量均为Q,其中A带正电荷,B带负电荷,D、C是它们连线的垂直平分线,A、B、C三点构成一边长为d的等边三角形,另有一个带电小球E,质量为m、电量为+q(可视为检验点电荷),被长为L的绝缘轻质细线悬挂于O点,O点在C点的正上方。现在把小球E拉到M点,使细线水平绷直且与A、B、C处于同一竖直面内,并由静止开始释放,小球E向下运动到最低点C时,速度为v。已知静电力常量为k,若取D点的电势为零,试求:
(1)在A、B所形成的电场中,M点的电势。
(2)绝缘细线在C点所受到的拉力T。