设函数 f ( x ) = a x 2 + b x + c ( a ≠ 0 ) ,曲线 y = f ( x ) 通过点 ( 0 , 2 a + 3 ) ,且在点 ( - 1 , f ( - 1 ) ) 处的切线垂直于 y 轴.
(Ⅰ)用 a 分别表示 b 和 c ; (Ⅱ)当 b c 取得最小值时,求函数 g ( x ) = - f ( x ) e x 的单调区间。
已知函数,(1)判断函数的奇偶性;(2)求证:在为增函数;(3)(理科做)求证:方程至少有一根在区间.
已知函数()的最小正周期为. (1)求的值; (2)求函数在区间上的取值范围.
已知向量,且x∈[0,],求 (1); (2)若的最小值是,求实数的值。
(12分)已知,求下列各式的值: (1);(2)。
已知集合,,若,求实数的取值范围.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号