已知棱长为1的正方体AC1,E、F分别是B1C1、C1D的中点.(1)求证:E、F、D、B共面;
(2)求点A1到平面的BDEF的距离;
(3)求直线A1D与平面BDEF所成的角.
(本小题8分)
设函数是定义域在
的函数,且
,对于任意的实数
,都有
,当
>0时,
.
(1)求的值;
(2)判断函数在
的单调性并用定义证明;
(3)若,解不等式
.
已知椭圆的离心率为
,椭圆上任意一点到右焦点
的距离的最大值为
。
(I)求椭圆的方程;
(II)已知点是
线段
上一个动点(
为坐标原点),是否存在过点
且与
轴不垂直的直线
与椭圆交于
、
两点,使得
,并说明理由。
(本小题满分14分)已知在四棱锥P-ABCD中,底面ABCD是边长为4的正方形,△PAD是正三角形,平面PAD⊥平面ABCD,E、F、G分别是PA、PB、BC的中点.
(I)求证:EF平面PAD;
(II)求平面EFG与平面ABCD所成锐二面角的大小;
(本小题满分14分)一袋子中有大小、质量均相同的10个小球,其中标记“开”字的小球有5个,标记“心”字的小球有3个,标记“乐”字的小球有2个.从中任意摸出1个球确定标记后放回袋中,再从中任取1个球.不断重复以上操作,最多取3次,并规定若取出“乐”字球,则停止摸球.求:
(Ⅰ)恰好摸到2个“心”字球的概率;
(Ⅱ)摸球次数的概率分布列和数学期望.
(本题满分14分) 在△ABC中, 角A, B, C所对的边分别为a, b, c, 且满足.
(Ⅰ) 求的值;
(Ⅱ) 若△ABC的面积是, 求
的值.