已知复数均为实数,为虚数单位,且对于任意复数。(1)试求的值,并分别写出和用、表示的关系式;(2)将(、)作为点的坐标,(、)作为点的坐标,上述关系可以看作是坐标平面上点的一个变换:它将平面上的点变到这一平面上的点,当点在直线上移动时,试求点经该变换后得到的点的轨迹方程;(3)是否存在这样的直线:它上面的任一点经上述变换后得到的点仍在该直线上?若存在,试求出所有这些直线;若不存在,则说明理由。
【原创】设命题p:函数的定义域为R;命题q:不等式对一切实数均成立. (1)如果p是真命题,求实数的取值范围; (2)如果命题“p或q”为真命题,且“p且q”为假命题,求实数的取值范围.
已知集合,,且,求实数的取值范围.
已知函数在处取得极值. (1)求的值; (2)求函数在上的最小值; (3)求证:对任意、,都有.
已知二次函数,满足,且方程有两个相等的实根. (1)求函数的解析式; (2)当时,求函数的最小值的表达式.
用三段论证明:.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号