如图(甲)所示为一种研究高能粒子相互作用的装置,两个直线加速器均由k个长度逐个增长的金属圆筒组成(整个装置处于真空中。图中只画出了6个圆筒,作为示意),它们沿中心轴线排列成一串,各个圆筒相间地连接到频率为f、最大电压值为U的正弦交流电源的两端。设金属圆筒内部没有电场,且每个圆筒间的缝隙宽度很小,带电粒子穿过缝隙的时间可忽略不计。为达到最佳加速效果,应当调节至粒子穿过每个圆筒的时间恰为交流电的半个周期,粒子每次通过圆筒间缝隙时,都恰为交流电压的峰值。
质量为m、电荷量为e的正、负电子分别经过直线加速器加速后,从左、右两侧被导入装置送入位于水平面内的圆环形真空管道,且被导入的速度方向与圆环形管道中粗虚线相切。在管道内控制电子转弯的是一系列圆形电磁铁,即图中的A1、A2、A3……An,共n个,均匀分布在整个圆周上(图中只示意性地用细实线和细虚线了几个),每个电磁铁内的磁场都是磁感应强度和方向均相同的匀强磁场,磁场区域都是直径为d的圆形。改变电磁铁内电流的大小,就可改变磁场的磁感应强度,从而改变电子偏转的角度。经过精确的调整,可使电子在环形管道中沿图中粗虚线所示的轨迹运动,这时电子经过每个电磁铁时射入点和射出点都在电磁铁的一条直径的两端,如图(乙)所示。这就为实现正、负电子的对撞作好了准备。
(1)若正电子进入第一个圆筒的开口时的速度为v0,且此时第一、二两个圆筒的电势差为U,正电子进入第二个圆筒时的速率多大?
(2)正、负电子对撞时的速度多大?
(3)为使正电子进入圆形磁场时获得最大动能,各个圆筒的长度应满足什么条件?
(4)正电子通过一个圆形磁场所用的时间是多少?
如图所示,一轻质弹簧竖直固定在地面上,上面连接一个质量m1=1.0kg的物体A,平衡时物体下表面距地面h1= 40cm,弹簧的弹性势能E0=0.50J。在距物体m1正上方高为h= 45cm处有一个质量m2=1.0kg的物体B自由下落后,与物体A碰撞并立即以相同的速度运动(两物体粘连在一起),当弹簧压缩量最大时,物体距地面的高度h2=6.55cm。g=10m/s2。
(1)已知弹簧的形变(拉伸或者压缩)量为x时的弹性势能,式中k为弹簧的劲度系数。求弹簧不受作用力时的自然长度l0;
(2)求两物体做简谐运动的振幅;
(3)求两物体运动到最高点时的弹性势能。
如图甲所示,光滑且足够长的平行金属导轨MN、PQ固定在同一水平面上,两导轨间距L=0.30m。导轨电阻忽略不计,其间连接有固定电阻R=0.40Ω。导轨上停放一质量m=0.10kg、电阻r=0.20Ω的金属杆ab,整个装置处于磁感应强度B=0.50T的匀强磁场中,磁场方向竖直向下。用一外力F沿水平方向拉金属杆ab,使之由静止开始运动,电压传感器可将R两端的电压U即时采集并输入电脑,获得电压U随时间t变化的关系如图乙所示。
(1)试证明金属杆做匀加速直线运动,并计算加速度的大小;
(2)求第2s末外力F的瞬时功率;
(3)如果水平外力从静止开始拉动杆2s所做的功W=0.35J,求金属杆上产生的焦耳热。
据2008年2月18日北京新闻报导:北京地铁10号线进行运行试验。为节约能源,一车站站台建得高些,车辆进站时要上坡将动能转换为重力势能,出站时要下坡将重力势能换为动能,如图所示。已知坡长为x,坡高为h,重力加速度为g,车辆的质量为m,进站车辆到达坡下A处时的速度为v0,此时切断电动机的电源。
(1)车辆在上坡过程中,若只受重力和轨道的支持力,求车辆“冲”到站台上的速度多大?
(2)实际上车辆上坡时,还受到其它阻力作用,要使车辆能“冲”上站台,车辆克服其它阻力做的功最大为多少?
|
如图所示,一质子由静止经电场加速后,垂直磁场方向射入感应强度B=10-2T的匀强磁场。在磁场中的a点与一静止的中子正碰后一起做匀速圆周运动,测得从a点运动到b点的最短时间t1=2.2×10-6s,再从b点继续运动到a点的最短时间t2=1.1-5s。已知a、b两点的距离x=0.2m,质子的电量e =1.6×10-19C。
求:(1)质子和中子碰撞到一起后,做圆周运动的周期T=?
(2)质子和中子碰撞到一起后,做圆周运动的轨道半径r=?
(3)若质子的质量和中子的质量均为m=1.67×10-27kg。电场的加速电压U=?
![]() |