如图所示,四棱锥 P - A B C D 的底面 A B C D 是半径为 R 的圆的内接四边形,其中 B D 是圆的直径, ∠ A B D = 60 ° , ∠ B D C = 45 ° , P D 垂直底面 A B C D , P D = 2 2 R , E , F 分别是 P B , C D 上的点,且 P E E B = D F F C ,过点 E 作 B C 的平行线交 P C 于 G . (1)求 B D 与平面 A B P 所成角 θ 的正弦值 (2)证明: △ E F G 是直角三角形; (3)当 P E E B = 1 2 时,求 △ E F G 的面积.
下列方程能否表示圆?若能表示圆,求出圆心和半径. (1)2x2+y2-7y+5=0; (2)x2-xy+y2+6x+7y=0; (3)x2+y2-2x-4y+10=0; (4)2x2+2y2-5x=0.
已知一曲线是与两个定点O(0,0)、A(3,0)距离的比为的点的轨迹,求出曲线的方程.
已知圆的方程x2+y2+2(a-1)x+a2-4a+1=0,若点(-1,-1)在圆外,求实数a的取值范围.
求与x轴相切,圆心在直线3x-y=0上,且被直线x-y=0所截弦长为27的圆的方程.
若直线y=kx+2与圆(x-2)2+(y-3)2=1有两个不同的交点,求k的取值范围?
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号