如图,在以点 为圆心, 为直径的半圆 中, , 是半圆弧上一点, ,曲线 是满足 为定值的动点 的轨迹,且曲线 过点 .
(Ⅰ)建立适当的平面直角坐标系,求曲线
的方程;
(Ⅱ)设过点
的直线
与曲线
相交于不同的两点
.若
的面积不小于
,求直线
斜率的取值范围.
如图,为圆
的直径,点
、
在圆
上,
,矩形
所在的平面与圆
所在的平面互相垂直.已知
,
.
(Ⅰ)求证:平面平面
;
(Ⅱ)求直线与平面
所成角的大小;
(Ⅲ)当的长为何值时,平面
与平面
所成的锐二面角的大小为
?
给定直线动圆M与定圆
外切且与直线
相切.
(1)求动圆圆心M的轨迹C的方程;
(2)设A、B是曲线C上两动点(异于坐标原点O),若求证直线AB过一定点,并求出定点的坐标.
某学校为调查高二年级学生的身高情况,按随机抽样的方法抽取200名学生,得到男生身高情况的频率分布直方图(图(1))和女生身高情况的频率分布直方图(图(2)).已知图(1)中身高在170~175cm的男生人数有48人.(Ⅰ)在抽取的学生中,身高不超过165cm的男、女生各有多少人?并估计男生的平均身高。
(Ⅱ)在上述200名学生中,从身高在170~175cm之间的学生按男、女性别分层抽样的方法,抽出7人,从这7人中选派4人当旗手,求4人中至少有一名女生的概率.
已知,函数
(Ⅰ)若求
的值;
(Ⅱ)求函数的最大值和单调递增区间。
已知函数,其中
。
(1)若函数有极值
,求
的值;
(2)若函数在区间
上为增函数,求
的取值范围;
(3)证明: